STABILITY OF VIBRATIONS OF FINITE AMPLITUDE
IN AN ELECTRON —ION RING

G. P. Berman UDC 533.95.7/.8

The article discusses transverse vibrations of finite amplitude in an electron—ion ring. Far
from the region of linear resonances, an equation is obtained for slowly varying amplitudes,
and the conditions are found for the excitation of instability of the "negative pressure" type.
Near the lower boundary of the region of linear instability, the conditions are found under
which nonlinearity breaks down the stability of the vibrations with finite amplitudes.

1. In [1] a study was made of the question of the stability of an electron—ion ring with respect totrans-
verse vibrations (instability of the "spiral" type in the approximation of the linearization of the polarization
force, with a relative shift of the centers of gravity of the bundles. It is found that there exists a region of
wave numbers (k. < k< k) for which there is instability. The appearance of transverse instability is con-
nected with the presence of resonances at the frequencies of the electron—ion vibrations (near k+) and at
Doppler frequencies of the vibrations of the electrons in a focused magnetic field (near k_), The nonlinear
stage of the development of the vibrations shows that, near the upper boundary of the region of instability
(k +), the nonlinear polarization force stabilizes the instability at amplitudes which are small in comparison
with the transverse radius of the bundle [2]. In the case where there is no external focusing of the electrons,
in [2] an exact solution was obtained in the form of a nonlinear stationary wave, moving along the bundle.
With nonlinearity in an electron—ion annulus, there is the possibility of vibrations with finite amplitudes,
both near the region of linear instability and far from it.

In the present article, equations are obtained which describe vibrations of this type, and a study is
made of the question of their stability.

The models chosen were two rigid bundles of electrons and ions, whose particle density in a trans-
verse cross section is distributed in accordance with the Gaussian law

fg,1 () = n®; exp (—r 2/ ac?) @t.1)

where @, is a constant characterizing the radius of the bundles; r,
is the modulus of the radius vector of a particle in the plane of the
transverse cross section of the bundle. Measuring all the space
and time quantities in the units @, and w,, respectively. (wg®=
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of the electrons), we write the system of equations for the trans-
verse displacements of the centers of gravity of the bundles [1, 2],

/ \ Bafdtr 4 Mo = — 8 (z — y)ll —Ya (y — 2)?], &y/d = (z — L — Y (g — )T
w d/dt = 8/9t + v8/8z, & = ngb“) Mll'\mgo) me, = (4 — o) (1.2)
. / \ Here x(y) is the shift of the electrons (ions); A is the frequency
- 4/ of the vibrations in an external focused field; v is the velocity of the
2z -/ 4 / Z electrons.
Fig. 1
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The polarization force in (1.2), arising with a fransverse shift of the centers of gravity of the bundles,
is calculated for the distribution (1.1) under the assumption of a small degree of nonlinearity (x, y «<1).

With the satisfaction of the latter condition, we use the method of "extension," developed in [3-5]. We
seek the solution of (1.2) in the form

oo ) s (1)
=30 5 (D7) e s
e WP )
where £<«1, £ and T vary slowly,
E= g (z — cot), ¢ = 0w /0k, T= € (1.4)

With an accuracy up to €, from (1.2) we obtain the dispersion equation of the linear theory [1],
F@)=0"?+ 8o — k) — A =1
Taking into account that
co= v/[1 -+ dw/o? (@ — k)] (1.5
with an accuracy to £? we obtain
2, — ay,® = 2icq 80/0E, O (&, V=5V (E, 1), a =1 —0? (1.6)

Taking account of (1.5), (1.6), in the order €3, we obtain an equation for d(s, 1,

aD/ot + ivRD/IE? = ig | D PO a.7
_ 1 T4etw® | o feo— )2 1 [a2 (© — ko) s
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g="%—a)ffo?(©—kv) /814 o] (1.8)

An equation of the type (1.7) was investigated, for example, in [4-6]. We shall show the conditions
under which instability of the negative-pressure type is possible. We seek the solution of (1.7) in the form

DEv)=Vpexp (—- %Scda) (1.9)

Substituting (1.9) into (1.7), and separating the real and imaginary parts, we obtain a system of equa-
tions for determining p and o,

ap-l"ég(sp)—ﬂ _+<sa_a_—2 "p+ 28‘21/’ a(:; Ve (1.10)

The last term in the second equation of (1.10) is small under the condition
qAk > 1 1.11)

where A Jx— Y‘max is the amplitude of the relative shift of the centers of gravity of the bundles. The quan-
tity gy p% in (1.10) plays the role of the pressure, if p and ¢ are regarded as the hydrodynamic density and
velocity, With gy« 0, the "pressure®™ becomes negative, and the initial perturbations rise exponentially. The
condition gy< 0 gives

4e?0 2o - o (eg — )28 - 2 <0 (1.12)
Let us examine the ionic branch of the vibrations
‘m =~ 1+ 82122, a= — 8/k%2, ¢y =~ — 6/k3vzv (1.13)

Taking account of (1.13), from (1.11), (1.12) we obtain the conditions for the appearance of instability
of the negative-pressure type,

871 (koA )2 > 1, 8 (0 ko) <€ 1 (1.14)

With small values of o (the case of small condensation), condition (1.14) is satisfied well even with
relatively small values of A.

2, Let us consider the stability of vibrations of finite amplitude near the lower boundary of the re-
gion of linear instability (k.). Using a method analogous to that of Sec. 1, we obtain an equation for
& (&, T) near the boundary of the region of linear instability FHw=0),
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i0D/0E = ad?®/dt — (b| D+ @), 1=18t, §=¢% @.1)
a = —Y, [4w?/0 + a2hve/o 1(vm 6)72
b= —3s (1 — a)*ow)™, e= (W | p Dk, p= (0 — vodlve, || <1 (2.2)

where v, is the velocity at the boundary of the region of instability. We select a vibration with the wave vec-
tor ke k., i.e., in a linear approximation thevibration is stable (u>0), and we consider the case V& =x < 1;
AS1, (A~ 1).

From (2.2) we obtain
a_ =~ —2k/(t +Nxn, b=~ —3k/h(1+ 1) 2.3)
We seek the solution of (2.1) in the form
©(§, 7)=A (v) exp (— i (v)) 2.4)

We substitute (2.4) into (2.1) and separate the real and imaginary parts; we then integrate the equa-
tion for the amplitude A (T) once.

We obtain
Y, (d4/d1)? + V (A) = H == const (2.5)
V (4) = — M*A® — (bjha) A* — (c/2a) A2, M = A2d{/dt = const (2.6)

Let us consider vibrations with a zero "moment,” M=0. The solution of Eq. (2.5) has the form

AW =AVTI—Bsa[Vialc/a[d+Bw V=BT 2.7
B=VT—H/Ve, Ao=V]c/b], Vo=c/4|ab]| 2.8)

Figure 1 illustrates the potential curve (2.6). The values of Ay and V, on Fig. 1 are calculated using
(2.8). In the case (2.3), an evaluation of the value of the maximal amplitude A = [x—y|,,, corresponding to
Ay in 2.7), (2.8) gives

A=4eV U +R)/3 2.9)

The quantity € corresponds to a shift with respect to k from the lower boundary of the region of in-
stability from the side of small values of k, into the region of linear stability (& ~ | p|): & — k =e*_. There-
fore, assigning small values for the quantity €, we obtain small critical amplitudes in expression (2.9), at
which there is a breakdown of the stability ofvibrations of finite amplitude near the lower boundary of the
region of instability.

The author is indebted to B. V. Chirikov for his evaluation of the results of the work.
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